
CISC 3115 Final Review Guide

Readings
You are responsible for Chapters 1 through 9, 12, 13, and 16 of Head-First Java, 2nd Edition, as well as
the assigned reading on recursion (including the material linked therein).

Study Tactics
Work as many exercises from the book as you can.
Review all the questions I’ve asked you in this class.
Review all code from exercises, CodeLabs, etc.
Re-read readings (and reading guides) now that you’ve worked with ideas in lecture/lab.

Topics and Targets
Note: the fnal exam is cumulative, so all the material from the midterm review guide is part of your
review materials for the fnal. Te questions on the fnal will certainly focus on topics we covered
afer the midterm—but of course, you will need to have a solid grasp on the frst half of the course in
order to do well.

Don’t worry about memorizing methodss I’ll provide the signatures of any methods (especially from
Swing and Collections) you might need. But you’ll have to know how to use thems

Unit 4

Learning Targets
• I can describe the diferences between event-driven programming and "procedural"

programming.
• I understand how interfaces are used to facilitate event-handling in Java.
• I can use subclassing and overriding to provide customized behavior of GUI components.
• I can use the paintComponent() and repaint() methods to ensure GUI components are

drawn at the right time(s).
• I can write inner classes to support the behavior of a GUI application.
• I can use layout managers to control the appearance of a GUI application.

Topics
Swing and the Abstract Windowing Toolkit
Event-handling
Layout
Model-View-Controller concept

• as application design
• as component design

Inner classes

Unit 5

Learning Targets
• I have a general understanding of Java's Collections framework.
• I can write code that uses generic methods and classes defned in the Java API.

• I can describe some diferences in behavior among lists, sets, and maps.
• I can choose which kind of Java collection to use based on the problem I am trying to solve.

Topics
Generic types
Te Java Collection Framework
Using generic methods and classes
Lists, Maps, and Sets

Unit 6

Learning Targets
• I can identify a recursive method.
• I can trace the computation of a recursive method.
• I can develop and implement a recursive algorithm to solve a problem.
• I can apply a recursive defnition to identify values that meet it.

Topics
Nature of recursion
Recursive methods
Binary search
Recursive defnitions

Exam Structure, Roughly
50%: short-answer/multiple-choice
30%: writing code
20%: analyzing code

Application Activities
(Unit 6 application activities coming soons)

Remember that instead of writing frame.getContentPane().add(button);
you can just write frame.add(button);

What is JFrame’s superclass?

a) javax.swing.Frame
b) java.awt.Frame
c) javax.swing.JComponent
d) java.awt.Component

What is JButton’s superclass?

a) javax.swing.Frame
b) java.awt.Frame
c) javax.swing.JComponent
d) javax.swing.AbstractButton

Which class is common to the “ancestors” of both JButton and JFrame?

a) java.awt.Container
b) javax.swing.JComponent
c) javax.swing.AbstractComponent
d) javax.swing.Base

In Swing, Bob can designate a class as an event handler by
a) Extending the appropriate base class
b) Declaring the appropriate instance variable
c) Implementing the appropriate interface
d) Adding the appropriate Swing component.

Consider the process through which a Swing buton-click causes “something to happen.” How many
objects are directly involved in this process? (Not counting, necessarily, the component that contains
the buton.)

a) 1
b) 2
c) 3
d) 4

To register an object as a listener for a buton’s clicks,
a) Pass a reference to the buton to the object’s listenTo() method
b) Create a new EventRegistry object, passing references to the object and the buton.
c) Pass a reference to the buton to the object’s actionPerformed() method
d) Pass a reference to the object to the buton’s addActionListener() method

To draw graphics on a Swing component, Guri must ___________ its _______________ method

a) extends paint()
b) overloads paint()
c) overrides paintComponent()
d) implements paintComponent()

If Swing code involves “painting” graphics, how ofen should Natalia call the “painting” method (the
one from the previous question)?

a) Never
b) When you change the graphics to be painted.
c) Whenever the Swing window is moved
d) 60 times a second, to make sure it looks smooth to the human eye

Te next few questions are based on the CircleSizes/CirclePanel code handouts.

First, look at variable declarations in CircleSizes. Note that frame is declared (line 17) as a local
variable in makeGUI, but the two butons and the CirclePanel are declared (lines 7-9) as instance
variables (even though they don’t get objects to refer to (19-21) until makeGUI!) So, why not just
declare the butons and the CirclePanel inside main along with frame?

a) Tat is a perfectly fne choice; either approach will work.
b) Tis will compile and run, but the butons won’t “work right.”
c) Tis will compile, but we’ll get an exception when it runs.
d) Tis won’t compile.

Tere’s a problem with the application’s behavior [circle can vanish and not reappear immediately].
Which methods need to be modifed to fully address this problem?

a) CircleSizes.actionPerformed
b) CirclePanel.CirclePanel
c) CirclePanel.decDiameter
d) a and b
e) b and c

Rewrite this code so that CirclePanel implements ActionListener and (therefore) handles the
buton-clicks. Specifcally:

• write the new version of actionPerformed, as a member of CirclePanel
• write any other new/changed code in CirclePanel
• give the line numbers of any lines in CircleSizes that need to change (in addition to the

obvious ones, 5 and 34-40)

Consider the next version of the circle code.

Which of these is not an inner class?

a) CirclePanel

b) BigListener
c) SmallListener
d) InnifiedCircle
e) Tese are all inner classes. Jeez.

In this code, for which inner class do we save a reference to an instance?

a) CirclePanel
b) BigListener
c) SmallListener
d) None of the above.

Do we need to save that reference? What if we delete lines 5 and 17, and make line 23

frame.add(BorderLayout.CENTER, new CirclePanel());

a) Tat’s fne; everything will work.
b) Tis will run, but it won’t behave properly.
c) Tis will crash when we try to run it.
d) Tis won’t compile.

Tinking about the object-oriented structure of this code, we essentially have 3 kinds of classes we
wrote: (1) InnifiedCircle (IC); (2) CirclePanel (CP); (3) the two Listeners (2L). Which of
these is the most precise way to describe the relationship among these classes?

a) IC provides basic behavior; CP specializes that behavior; 2L provides additional behavior.
b) IC holds the application data; CP gives us a view of that data; 2L lets us change that data.
c) IC contains many variables; CP lets us access those variables; 2L lets us know when a variable

changes.
d) IC creates objects; CP and 2L defne the behavior of those objects.
e) IC, CP, and 2L work together to create a beautiful application.

Te InnifiedCircle code is a few lines shorter than the frst version (even afer you remove the
import statements). What’s the fundamental reason for this?

a) I removed three methods from CirclePanel.
b) I added two classes.
c) I’m saving fewer references.
d) It’s easier to share data among these classes.
e) It’s easier to describe the desired behavior.

Hmm. What about encapsulation and inner classes?

a) Inner classes break encapsulation: all those private instance variables exposed!
b) Inner classes break encapsulation: the outer class can totally plunder the inner class!
c) Inner classes give beter encapsulation; implementation details are completely hidden.
d) Tey’re totally unrelated; as long as there aren’t any new public instance variables, it’s all

good.

Which aspects of an “add”-ed component does a layout manager control?

a) Size and event-handling
b) Size and position
c) Position and event-handling
d) Size and color
e) Position and color

OK, another piece of code, and a sample application. Te code printout for SwingLine only does
layout; no event-handling. And it doesn’t include any of the inner classes the application needs. If
we’re going to complete the application using inner classes (in a maximally object-oriented way),
how many do we need to write? (Also, be prepared to give the names of any classes or interfaces we
need to extend/implement in these inner classes.)

a) 3
b) 5
c) 7
d) 8
e) 9

Write those inner classes.

Let’s focus a bit more on Swing components. Which of the following are responsibilities of the
JTextField class?

a) Store some text data
b) Display some text data
c) Respond to some keyboard entries
d) a and b
e) a, b, and c

How many diferent kinds of String comparison does the String class support (without any additional
work from the programmer)? (Hint: check the API.)

a) 1
b) 2
c) 3
d) 4

Te documentation for the Collections.sort(List<T> list) method says it sorts the elements
of the list “according to the natural ordering of its elements.” What does “natural ordering” mean
here?

a) Te obvious ordering.
b) Te ordering of these elements as they are found in nature.
c) Te ordering specifed by the elements’ compareTo() method.
d) Te ordering specifed by Object.compareTo().
e) None of the above.

Consider the usual x-y graph, but restricted only to integer values. Call this a latice.
Obviously, points on this graph can only have integer
coordinates, so consider this fragment of a
LatticePoint class:

class LatticePoint {
private int x;
private int y;
LatticePoint(int x, int y){ … }
int distance(LatticePoint otherPoint)

{ … }
// can only ‘travel’ horiz. or

vert
}

Write a class that will allow us to sort a Collection of
LatticePoints by their distance from (0,0).

Here’s a solution to the previous question. Change this to make this a class that will support us
sorting points by their distance from any point, not just the origin. If you need to add code, indicate
where it’s added; if you need to delete or change existing lines, indicate that.

1 class DistanceCompare implements Comparator<LatticePoint> {

2 public int compare(LatticePoint one, LatticePoint two) {
3 LatticePoint origin = new LatticePoint(0,0);
4 return (one.distance(origin) – two.distance(origin));
5 }
6 }

Suppose I write

class Hamburger implements Comparable<Hamburger> {
public int compareTo(Hamburger h)
.
.
.

}

What kinds of objects will this let me compare Hamburgers with?

a) Hamburgers (duh)
b) Hamburgers and objects of any “ancestor”/super class of Hamburger
c) Hamburgers and objects of any “descendant”/sub class of Hamburger
d) Any objects of a class that implements Comparable<T>
e) None of the above.

What’s the fundamental purpose of the hashCode() method (properly implemented)?

a) It prevents object duplication.
b) It gives you a quick but rough indication of whether two objects are equal or not.
c) HashSet and similar classes use it to organize their internal storage.
d) Both a and b.
e) Both b and c.

Here’s an overriden equals() method for the LatticePoint class:

int equals(Object point) {
 return (x == ((LatticePoint) point).x &&

y == ((LatticePoint) point).y);
}

Based on the book’s discussion of hashcodes, which of these is the best return value for my overriden
int hashCode() method?

a) 1
b) x + y
c) super.hashCode()
d) Math.random() * x
e) None of these are wise choices.

From our perspective as API users, which of these are important diferences between TreeSet and
HashSet?

a) We have to override diferent methods to get our classes to work with them.
b) TreeSet keeps its elements in order; HashSet doesn’t.
c) TreeSet’s internal implementation is much more complex than HashSet’s
d) Both a and b
e) Both b and c

Which of these is a title of a song writen both by Van Halen and by Kris Kross? (Yes, we’re talking
about songs writen before Java existed.)

a) Zombie
b) Rime of the Ancient Mariner
c) Jump
d) Hotel California
e) I Missed the Bus

For each of the applications below, choose whether the best primary collection is

a) a List
b) a Set
c) a Map

I. An address book (a collection of contacts)
II. Calculating statistics on a student assignment (a collection of scores)
III. A warehouse inventory (a collection of information about items in stock)
IV. Tracking event atendance (a collection of registered atendees)
V. Recording the objects that want to listen to a JButton (a collection of ActionListeners)

	Readings
	Study Tactics
	Topics and Targets
	Unit 4
	Unit 5
	Unit 6

	Exam Structure, Roughly
	Application Activities

