
CISC 3115 Midterm Review Guide

Readings
You are responsible for Chapters 1 through 9 of Head-First Java, 2nd Edition. Te exam will focus, of
course, on the new material from those chapters.

Study Tactics
Work as many exercises from the book as you can.
Review all the questions I’ve asked you in this class (see Application Activities appended below).
Review all code from exercises, CodeLabs, etc.
Re-read readings (and reading guides) now that you’ve worked with ideas in lecture/lab.

Topics and Targets

Unit 1
Learning Targets
• I can explain the motivation and structure of Java's "virtual machine" approach.
• I can distinguish among objects, references, and primitive values.
• I can explain the relationship between objects and classes.
• I can explain some of the advantages of object-oriented design and programming.
• I can write a simple class defnition, as well as code that uses that defnition.

Topics
Object-Oriented Design (Brad vs. Larry)
Te Java Virtual Machine
primitive and reference types
writing a simple class (methods and instance variables)

Unit 2
Targets
• I can write a class defnition that includes instance variables and methods that use those variables.
• I can distinguish between instance variables and local variables.
• I can argue for the importance of encapsulation in class design, and use the public and private

keywords appropriately.
• I can write "enhanced" for loops and use them appropriately.
• I can describe the class development process, including the role of test code.
• I can fnd and the online Java API documentation in order to understand how to use a particular

method in the API.

Topics
Pass-by-value
Encapsulation; public vs private.
More advanced object-oriented programming (e.g. developing the Dot-Com game)
enhanced for loops
casting
ArrayList

“short circuit” boolean operators
import and the Java package system

Unit 3
Targets
• I can explain what "polymorphism" means in the context of object-oriented programming, and I

can explain how it is implemented in the Java language.
• I can use inheritance to create a class that is a modifed form of another given class.
• I understand the usefulness of abstract classes, what "abstract" means, and how to use abstract

classes to ultimately create "real" objects.
• I can create interfaces and write classes that implement those interfaces.
• I understand overloading and overriding.
• I can describe the "lifespan" of Java objects.
• I can design classes with constructors and implement those constructors efciently and

efectively.

Topics
Polymorphism—what is it, and why?
Inheritance: base class, superclass, subclass, IS-A, extends
Even more advanced object-oriented design (like pp. 170-174)
Overriding and overloading
abstract classes and methods
the Object class
Polymorphism and casting
Interfaces
Stack vs. heap
Constructors
Garbage collection

Exam Structure, Roughly
50%: short-answer/multiple-choice
30%: writing code
20%: analyzing code

Application Activities
(Note that some of these we didn’t do in class.)

1. Why is the Java Virtual Machine that runs Java programs called “virtual”?

a) It is run over a network, rather than on the same physical machine on which it appears the
Java program is running.

b) It is a sofware machine, rather than the “real” hardware of the laptops and tablets in this
classroom.

c) It is a conceptual machine that is useful during the compilation process, but “real” hardware
actually runs the program.

d) It operates on bytecodes, rather than low-level bits.

2. Which of these are advantages of the virtual machine approach?

a) Once a program is writen, it can be run on any platform with a JVM.
b) More security checks can be made before a program runs.
c) More people can write Java programs.
d) Both a and b.
e) Both a and c.

3. If a variable is not primitive, it is a
a) Pointer
b) Object
c) Reference
d) Constant
e) Class

4. Which of the following types is not a primitive type?
a) boolean
b) int
c) String
d) double
e) char

5. A reference to an object is best thought of as
a) Te address of the object in memory.
b) Another name for the object.
c) A way to get to the object in order to tell it to do something.
d) A way to restrict what the object can do.

6. Write a Java program that reads exactly 10 integers from the keyboard, stores them in an array,
calculates the average, then outputs the list of numbers and their average. Write a method called
average() that returns the average of an array of integers; use this to compute the average.
(Assume the input is exactly 10 integers—don’t worry about the possibility of bad input.)

9. OK, on to Brad and Larry. On the frst iteration of their contest (p. 28) who wrote less code and was
done more quickly?

a) Larry
b) Brad

10. On the second iteration (p. 29), it looks like they both wrote about the same amount of code. Who
has the advantage, though, and why?

a) Larry: adding an if statement is much simpler than writing a whole new class.
b) Larry: his code is still in a single fle, but Brad now has at least four fles to deal with.
c) Brad: he can add new behavior (a whole new Shape!) without changing any previous code.
d) Brad: he knows what a .hif fle is.

11. On the third iteration (p. 30), Brad prety clearly has the upper hand. What fundamental
diference seems to be helping Brad here?

a) His initial focus on “things” gives him more fexibility when diferent kinds of things behave
diferently;

b) Brad tends not to work in a cubicle and therefore has a more artistic approach to writing code.
c) Brad’s code is beter at geometric calculations.
d) None of these; Brad is just a Smarter Programmer.

12. In the fnal analysis (pp. 31-2), why is Brad’s approach more efective than Larry’s?

a) Brad’s design has a lot of duplicated code.
b) Brad’s design is able to express relationships (like shared behavior) among diferent shape

classes.
c) Brad’s design can handle the Amoeba’s diferent rotation, but Larry’s can’t.
d) Actually, in the fnal analysis, Brad’s design isn’t any beter than Larry’s.

13. Te “Guessing Game,” starting on p 38, is an example of a Java program organized around the idea
of “objects talking to objects.” Which of these object-to-object conversations does not happen in the
program? (Note: some of these names are object names and some are class names, so technically this
is a fawed question. Afer we discuss the answer, we’ll discuss how to correct the question.)

a) GameLauncher — GuessGame
b) GameLauncher — Player
c) GuessGame — Player
d) GuessGame — System.out
e) Player — System.out

14. Write a class defnition for the Square class. But this is not Brad and Larry’s Square class. Our
square is more concerned with geometry than with animation, so our squares “know” the length of
their side, and they can “do” calculations of their area and their perimeter. Use the Dog class on p. 36
as a template.

15. When a Java program is running, how is information sent to a method (arguments/parameters) or
from a method (return values)?

a) Java allows the calling method and the called method to share the values.
b) Java makes a copy: if it’s a primitive value, it makes a copy of the value; if it’s an object

reference, it makes a copy of the object.
c) Java makes a copy of the bits, no mater what the bits represent.
d) All of a, b, c are true in diferent circumstances.

16. Te basic principle of encapsulation is that generally, ...

a) Programmers should be able to change their minds.
b) Variables shouldn’t take on inappropriate values.
c) Objects should hide their data.
d) All instance methods should be public.
e) All instance variables should be private.

17. Suppose I defned a Counter class this way:

class Counter {
public:

int value = 0; // not technically required, but good to be clear
void increment() { value++; }
void reset() { value = 0; }
int getValue { return value; }

}

What, if anything, is the problem here?

a) Whoever’s using a Counter object can reset the value of the Counter at any time!
b) Te only way to change the value of the counter is to increment it—lame!
c) Someone could give the Counter a negative value.
d) Tere is no setValue() method.
e) Actually, there are no problems; this is a fne (if very simple) class.

18. Consider this code, which has some inadequate encapsulation:

class TenThings {
 int[] things;
 final int THINGCOUNT=10;
 void setThing(int index, int val) {
 things[index] = val;
 }
 int getThing(int index) {
 return things[index];
 }
}

class Thinger {
 public static void main(String[] args) {
 TenThings things = new TenThings();
 Arrays.fill(things.things, 27); // put same value in all elements
 .
 .
 .

Tis code works, but it nonetheless has a serious encapulation-related problem. What is it?

a) Both the class and the main method have a variable called things.
b) Te THINGCOUNT constant is not used by any of this code.
c) If the TenThings class is changed to use an ArrayList to store the things, main breaks.
d) Why would you intialize everything to 27??!
e) Relaxx none of these are problems.

19. What is the best way of understanding the == operator?

a) It checks to see whether two things are equal.
b) It compares two paterns of bits to see if they’re the same.
c) It can only be applied to primitive values.
d) It can only be applied to two values of the same type.

e) It can only be applied to String values.

20. When you start writing a Java program, what’s the frst thing you should do?

a) Identify all the “things” in the program’s world, because these will become objects/classes.
b) Identify all the “procedures” in the program, because these will become methods.
c) Sketch how the program will run/behave to be sure you have a good grasp of what it’s

supposed to do.
d) Write pseudocode/prepcode so you can be sure you the right logic before you write “real”

code.
e) Write test code.

21. Which of these strategies does the book use in its development of “Sink a Dot Com”?

a) Implement a simpler version of the application frst.
b) Sketch a fowchart of the high-level behavior frst.
c) Write code frst.
d) Both a and b
e) Both b and c

22. Te book suggests we write “prepcode” before we write test code, because it allows us to “focus
on logic without stressing about syntax.” Which of these are also good reasons to write prepcode
before test code?

a) You might realize you need some additional methods.
b) You might realize you need some additional instance variables.
c) You might get ideas about tests to run (for example to make sure tricky logic is correct).
d) Both b and c.
e) All of a, b, and c.

23. Te book describes “Extreme Programming (XP)” as “a newcomer to the sofware development
methodology world.” But the book was writen in 2005. What happened to “Extreme Programming”
since then?

a) Only a few companies were able to make use of it, and it prety much died out.
b) It’s popular among small companies, but no “big” sofware can be produced this way.
c) Many of the practices (e.g. in the box on p 101) have persisted, though the full “Extreme

Programming” package isn’t really used.
d) Extreme Programming has been totally replaced by Agile Programming.
e) Extreme Programming is one of several widely-used development methodologies.

24. So writing test code very frst thing doesn’t make sense, but the book does write test code before
they start implementing the class. Why?

a) Writing test code helps you uncover errors in your design.
b) Writing test code is just more fun than writing classes.
c) Writing test code helps you focus on what the class code is supposed to do.
d) Afer writing test code, writing class code is incredibly pleasurable.
e) Tere is no good reason to write test code.

25. Which of these “Bullet Points” on p. 109 is incorrect?

a) Your Java program should start with a high-level design.
b) Choose for loops over while loops when you know how many times you want to repeat the

loop code.
c) Use the pre/post decrement to subtract 1 from a variable (x--)
d) Integer.parseInt() works only if the String represents a digit (“0”, “1”, “2”, etc.)
e) Use break to leave a loop early (i.e. even if the boolean test condition is still true).

26. What is the result of this code fragment?

int[] array = {1, 2, 3, 4, 5};
for (int i: array) {

i = i + 1;
}

for (int i: array) {
System.out.print(i + “, “);

}

a) 1, 2, 3, 4, 5,
b) 1, 1, 1, 1, 1,
c) 2, 3, 4, 5, 6,
d) this doesn’t compile
e) this has an error when it runs

27. Why do the book authors want to use ArrayList instead of regular arrays for their code?
a) Regular arrays can’t hold negative numbers.
b) Regular arrays can’t change their size.
c) Regular arrays make you use that annoying [square bracket] notation.
d) Regular arrays can only hold values of primitive types.
e) Regular arrays can’t have zero size.

28. What is the best way to write an if statement that will do something only when the ArrayList
list contains no elements or when its frst element is 0?

a) if (list.isEmpty() == true || list.get(0) == 0)

b) if (list.isEmpty() == true | list.get(0) == 0)

c) if (list.isEmpty() || list.get(0) == 0)

d) if (list.isEmpty() | list.get(0) == 0)

29. What is the purpose of the import statement?

a) It makes the code of other classes (like those in the Java API) available when your program
runs.

b) It saves you from typing annoyingly long class names, like
javax.security.auth.kerberos.DelegationPermission

c) It tells the compiler that your code relies on other classes.
d) It allows you to put your class in a package of your choosing.
e) It allows you to use classes that aren’t part of the Java API at all.

30. Which of these is not an advantage of using packages in Java?

a) Tey help organize the code in an application or a library.
b) Tey help prevent problems if two people working on an application decide to use the same

class name.
c) Tey help reduce the size of your (compiled) program.
d) Tey help improve security by allowing you to limit access to your code.

31. Imagine a program that reads an arbitrary number of Strings in from the input (where each
line of input is treated as a String), then outputs: the shortest String (if multiple Strings have
the shortest length, output the one that occurs frst in the input), the longest String (again, if
multiple Strings have the longest length, output the frst-occurring one), and print the Strings in
alphabetical order.

(A) Of those three outputs, which require me to store all the input?

a) Print the shortest
b) Print the longest
c) Print the sorted list
d) Both a and b
e) All of a, b, and c

(B) Now write this program. But DO NOT WRITE the sorting code yourself! Hint: what do you fnd
if you use the API search box to search for “sort”?

32. Considering the diagram on p. 167, if Brad and Larry’s boss were to add a Rectangle to the mix,
where should it go?

a) On the same level as the other four shapes.
b) As a subclass of Square.
c) As a subclass of Shape but a superclass of Square.
d) Not enough information given.

33. Considering the three classes on p. 169, which of these are not methods of the FamilyDoctor
class?

a) treatPatient()
b) makeIncision()
c) giveAdvice()
d) Neither a nor b are.
e) Neither b nor c are.

34. When designing an inheritance tree for a set of classes/types, what are the fundamental questions
to answer?

a) What are the nouns/things in the problem?
b) What do the types have in common?
c) How are the types related?
d) All of the above
e) Both b and c

35. Earlier, we talked about how instance variables are what an object “knows” and methods are what
an object “does.” Do any of these Animal instance variables (from p. 171) seem not to ft with what
an animal knows?

a) picture
b) food
c) boundaries
d) location
e) None of the above

36. Which of the following statements is supported by the diagram on p. 174?

a) Felines all make noise the same way.

b) Felines and Canines have no common behavior.
c) Felines all roam the same way.
d) Dogs and Wolfs (?) roam in the same pack.
e) Hippos eat grass.

37. Draw an inheritance diagram of the “Sharpen your pencil” classes on p. 176: Musician, Rock Star,
Fan, Bass Player, Concert Pianist. Note that not every class needs to be in the same inheritance tree.
Be prepared to defend your design decisions.

38. Suppose I implement some of the roam() methods in the Animal hierarchy:

class Animal {
void roam() { System.out.print(“move.”); }

}

class Feline {
void roam() { System.out.print(“calculate vector away from other

Felines... “);
super.roam(); }

}

class Cat {
void roam() { System.out.print(“visit litter box... “);

super.roam(); }
}

What is the output of

Cat c = new Cat();
c.roam();

a) visit litter box...
b) move. calculate vector away from other Felines... visit litter box...
c) visit litter box... calculate vetor away from other Felines...
d) visit litter box... calculate vector away from other Felines... move.
e) visit litter box... move.

39. Consider the two (very deep) statements

X IS-A Z.
Y HAS-A Z.

Find appropriate X and Y for each of the following Z. (For example, if Z is Doctor, then X could be
Surgeon (“Surgeon IS-A Doctor” and Y could be Hospital (“Hospital HAS-A Doctor”).

Employee.
Book.
File (i.e. a disk fle).
Team.
Polygon.

40. In general, overridden methods should provide

a) Behaviors unique to the subclass.
b) Behaviors common to all subclasses.
c) Behaviors that may change in future implementations.
d) Behaviors that add to the base class behavior.
e) Behaviors that the JVM cannot support.

41. Consider the following code:

class Hamburger {
 protected int calories = 800;

int getCalories() {
return calories;

}

}

public class Cheeseburger extends Hamburger {
protected int cheeseSlices = 1;
void setSlices(int cheeseSlices) {

this.cheeseSlices = cheeseSlices;
}

int getCalories() {
return super.getCalories() +

 100 * cheeseSlices;
}

}

What is the result of trying to compile and run the following code?

Hamburger[] breakfast = new Hamburger[4]; a) 3200
breakfast[0] = new Hamburger(); b) 3300
breakfast[1] = new Hamburger(); c) 3400
breakfast[2] = new Cheeseburger(); d) 3600
breakfast[3] = new Cheeseburger(); e) failure

int calories=0;
for (Hamburger h : breakfast) {

calories += h.getCalories();
}
System.out.println(“Your total calories for the meal: ” + calories);

42. An abstract class cannot be

a) Subclassed
b) Changed
c) Instantiated
d) Overridden
e) Compiled

43. Why should the book’s Animal class be declared abstract?

a) Because there are no real animals in the world.
b) Because there are too many real animals in the world.
c) Because Animal has no subclasses.
d) Because there’s no way to give specifc behavior for a general “animal.”
e) Both c and d.

44. What’s wrong with following code fragment?

ArrayList<Animal> myDogArrayList = new ArrayList<Animal>();
Dog aDog = new Dog();
myDogArrayList.add(aDog);
Dog d = myDogArrayList.get(0);

a) You cannot declare an ArrayList of Animals.
b) get() returns an Animal reference that can’t be assigned to a Dog reference.
c) It’s illegal to add a Dog object to an ArrayList of Animals.
d) Dog Adog New Dog is a terrible name for a band.
e) Tere’s nothing wrong.

45. Which of these is the best way to understand “interface”?

a) It’s a collection of instance variables.
b) It’s a completely abstract class.
c) It’s a role that any class can play.
d) It’s a universal polymorphic type.
e) It’s a good way to avoid the problems of multiple inheritance

46. You’re writing an application that does a lot of geometry. A lot of classes represent diferent kinds
of geometric shapes (no amoebas here). You decide to defne an interface called GeometricShape
that defnes the behavior any such class should have. It should include methods that calculate the
area of the shape, the centroid (which is, roughly speaking, the point in the center of the shape) and
the distance to (the centroid of) another geometric shape object.

Write this interface in Java. (Also write down any other decisions/assumptions you need to make in
order for this to work.)

47. OK, once more with the Square class. Write an entire class defnition for

public class Square implements GeometricShape {
private double side;
private Point location; // (x,y) coordinate of centroid

}

Make sure you provide a complete set of constructors.

Assume the Point class includes useful constructors as well as these methods:
getX(), getY(), setX(double), setY(double), distanceTo(Point).

48. Great. But on further refection, you’ve decided it makes more sense to make Square a subclass
of Rectangle. In particular, you’ve implemented

public class Rectangle implements GeometricShape {
protected double length;
protected double width;
protected Point location;
Rectangle();
Rectangle(double length, double width);
// and the GeometricShape methods

}

Rewrite your Square class as

public Square extends Rectangle { ...

49. Consider this code:

public class Secret {
private int secret = 10;
public int notSecret = 20;

public int getSecret() {
int sauce = (int) Math.random() * 100;
return secret + sauce;

}
public void setSecret(int parameter) { secret = parameter; }

}

public class Question22 {
public static void main() {

Secret mySecret = new Secret();
mySecret.setSecret(15);
System.out.println(mySecret.getSecret());

}
}

When this program runs, which of these are stored on the heap?

a) secret
b) sauce
c) parameter
d) mySecret
e) None of the above

51. Finally, let’s talk a litle bit about Java’s “garbage collection.” First of all: who is responsible for
doing it?

a) Te programmer
b) Te compiler
c) Te JVM
d) Te user
e) New York’s Strongest

52. What bad thing would happen if Java didn’t have garbage collection?

a) A program’s storage could become flled with nonsense values and start behaving wrong.
b) A program could run out of storage space on the stack and suddenly stop.
c) A program could run out of storage space on the heap and suddenly stop.
d) Te Java compiler could be unable to produce bytecode for new programs.
e) None of the above.

53. Which of these will not be “destroyed” by garbage collection?

a) instance variables
b) local variables
c) primitive variables
d) reference variables
e) both b and c

	Readings
	Study Tactics
	Topics and Targets
	Unit 1
	Unit 2
	Unit 3

	Exam Structure, Roughly
	Application Activities

